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Summary

Here, we report the evolution of two star-shaped (five-
way junction) deoxyribozymes from a catalytic DNA

containing a three-way junction scaffold. The transi-
tion was shown to be a switch rather than a gradual

progression. The star-shaped motifs, surprisingly,
only took five selection cycles to be detected, and

another four to dominate the evolving population.
Chemical probing experiments indicated that the two

deoxyribozymes belong to the same family despite
noticeable variations in both the primary sequence

and the secondary structure. Our findings not only de-
scribe the evolution of high-branching nucleic acid

structures from a low-branching catalytic module,
but they also illustrate the idea of deriving a rare struc-

tural motif by sampling the sequence variants of a
given functional nucleic acid.

Introduction

The advent of SELEX (an in vitro selection procedure) [1–
3] has generated a plethora of aptamers [4], ribozymes
[5, 6], and deoxyribozymes [7, 8]. These artificial nucleic
acids have been exploited to develop molecular tools [9,
10], provide insights into nucleic acid structures [11–13],
devise models for molecular evolution [14], and support
the ‘‘RNA world’’ hypothesis [15]. Among these pursuits,
our lab is interested in the development of fluorescence-
signaling deoxyribozymes as potential biosensors [16].

We previously optimized six deoxyribozymes, named
OA-I to OA-VI, that all contain a three-way junction
framework and are able to cleave a lone RNA linkage
sandwiched between a fluorescein-labeled deoxyribo-
thymidine (dT) and a DABCYL-labeled dT [17]. Although
the optimized deoxyribozymes have respectful rate con-
stants in the range of w0.2–1.6 min21, we attempted to
further fine-tune their catalytic performance by contin-
ued evolution of the early populations of the six OA
deoxyribozymes under a more stringent time pressure.
After seven selection cycles, a few additional deoxyribo-
zyme sequences have emerged along with the parent
sequences in four of the six OA lineages (data not
shown). Interestingly, two of these sequence classes
from the OA-IV population were found to have five-
stem structures arranged in a star-like configuration. In
this study, we conducted in-depth analyses of these
two sequence classes to establish their metal-ion re-
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quirement profiles, kinetic properties, and secondary
structures. The mechanism behind the transition from
the three-way junction structure of the parent deoxyri-
bozyme to the five-way junction configuration of the
star-shaped deoxyribozymes will also be discussed.

Results and Discussion

In Vitro Evolution Uncovered Five-Way Junction

Motifs
The starting pool (G0) contained w1014 sequence vari-
ants of OA-IV with a degeneracy of 0.3 (70% wild-type
nucleotide and 10% each of the remaining nucleotides
per position) [17]. Each variant was comprised of a 56
nucleotide random region flanked by 2 constant
sequence elements: the 30-primer binding site and the
chimeric DNA/RNA substrate, which also included the
50-primer binding site. The oligonucleotides were chal-
lenged to perform the cleavage of the lone RNA linkage
within 60 min in the solution containing 13 selection
buffer (SB) (13 SB; 50 mM HEPES [pH 6.8] at 23�C,
400 mM NaCl, 100 mM KCl, 7.5 mM MgCl2, 5 mM
MnCl2, 1.25 mM CdCl2, 1 mM CoCl2, and 0.25 mM
NiCl2). Active molecules were isolated by denaturing
polyacrylamide gel electrophoresis (PAGE), based on
the faster gel mobility of shortened sequences, and
were subsequently PCR amplified. Self-cleaving con-
structs were regenerated from the PCR products (see
Experimental Procedures) and subjected to the next cy-
cle of selection and amplification. In our previous work
[17], five additional rounds of selection were performed
with the reaction time decreased from 10 min in G1 to
1 min in G2–G5, and one representative clone from G6,
namely, 3J-22, was thoroughly examined. The kobs value
of 3J-22 was determined to be 0.46 min21, and the final
cleavage yield was 76%.

To explore whether incorporation of mutagenesis into
the selection course could further polish OA-IV to a more
efficient variant, we performed PCR by using a protocol
that could introduce w10% mutation to each nucleotide
position [18, 19], after rounds 4–9 over the evolution
trajectory that was branched out in G4 (Figure 1A). The
reaction time allowed for the evolving populations was
kept at 1 min for G4–G6, but it was dropped to 6 s for
the remaining generations in order to isolate the most ef-
ficient deoxyribozymes. The cleavage yield of the end
pool (G11) was 6% in 6 s. Individuals were cloned from
this pool and were sequenced.

Analysis of 29 clones revealed that there are, surpris-
ingly, 4 additional sequence classes beside the major
cluster that comprises the OA-IV catalytic module
(data not shown). However, none of them could be rec-
ognized even by sequence alignment with any of the
other five OA deoxyribozymes we previously reported,
as we suspected they might just be crosscontaminants.
We focused on the two dominant ‘‘unknown’’ sequence
classes (Figure 1B) and arbitrarily chose one sequence
from each class for further investigation. Our preliminary
secondary-structure models of the selected deoxyribo-
zymes, 5J-A28 and 5J-B38, are presented in Figure 2.
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Figure 1. Identification of 5J Deoxyribo-

zymes through In Vitro Evolution

(A) Selection trajectories of OA-IV. The selec-

tion trajectory of a partially randomized pool

of OA-IV (G0) was branched into two after

the third round of selection: (1) another two

selection cycles were performed without

any modification in the selection procedure

(with regard to the previous two rounds); (2)

mutations were introduced via mutagenic

PCR (open triangle) after rounds 4–9, and

the evolving population was challenged

with increasing selection pressure by drop-

ping the reaction time from 1 min to 6 s. Be-

sides the deoxyribozyme having the three-

way junction motif, deoxyribozymes with

a bona fide five-way junction scaffold were

also found in the end pool, G11. Gray and

black lines represent the substrate and de-

oxyribozyme, respectively. The lone RNA

linkage is highlighted with a black arrow-

head.

(B) Sequences of the initial 13 clones of the

5J deoxyribozymes. The names fixed on

the left of individual sequences designate

their sequence class and clone number

(e.g., 5J-A5 = 5J-class A, clone #5). The

scale at the top corresponds to the nucleo-

tide positions of deoxyribozymes located

between the two PCR primer binding sites;

thus, a total of 60 nucleotides were trans-

mutable by mutagenic PCR. Filled and

open bars on top of each sequence class in-

dicate the nucleotide locations in the rele-

vant helices and bulges/loops, respectively.
For brevity, deoxyribozymes with a five-way junction
scaffold are designated as 5J-XZ, where X represents
the sequence class, and Z denotes the clone number
(e.g., 5J-A28 = 5J-class A, clone #28). Deoxyribozymes
with an OA-IV module, thus the three-way junction scaf-
fold, are designated as 3J-Z. Both 5J-A28 and 5J-B38
have a star-shaped, five-stem structure, wherein helix
1 (P1) is derived from the Watson-Crick pairings be-
tween the substrate and the 30-primer binding site,
which was unintentionally designed in the starting
pool. The assemblage of P2 and P3 in both 5J deoxyri-
bozymes is essentially the same as that in 3J-22. This
Figure 2. Structural Models of Representative 3J and 5J Deoxyribozymes

A structure model of 3J-22 [17] is shown for comparison with 5J. Highly conserved residues (>90% occurrence in all G6 clones) of 3J are high-

lighted with filled circles. The redundant sequence of 3J-22 is displayed as a long, solid bar at its 30 end. Common mutations to either class or

both classes of 5J deoxyribozymes, based on all of the sequenced clones of 5J (Figure S4), are highlighted with open squares and filled

squares, respectively. Watson-Crick and G-T wobble base pairs are designated with short, black dashes and small, black dots, respectively.

Watson-Crick interactions between covariable residues are accentuated with open bars (not shown in 3J-22). Nucleotides intolerable to meth-

ylation are indicated with solid arrows. Primer binding sites are italicized. F, fluorescein-dT; Ar, ribo-adenylate; Q, DABCYL-dT.
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strongly suggests that these sequence classes were de-
scended from the OA-IV lineage, but not from any other
deoxyribozyme species in our laboratory that might
somehow contaminate the OA-IV pool. The origins of
P4 and P5 can be traced to J3/1 (the long junction of
P3 and P1) along with the substrate-binding arm that
contributes to P1 formation in the OA-IV module (Fig-
ure 2, 3J-22). Since the number of nucleotides within
the interhelical junctions (J1/2 and J4/5) only adds up
to three in both 5J-A28 and 5J-B38, the overall struc-
tures of the 5J deoxyribozymes are very compact.

Despite the very limited number of clones (Figure 1B),
several covarying base pairs have been found in P3,
P4b, and P5 of 5J-A (Figure 2), and one covarying pair
was found in P5 of 5J-B. In combination with the fact
that our models also coincide with the lowest-energy
structures predicted by mfold [20], with the exception
of P4a, which did not exist in the mfold-postulated
structures, we believe that the newly emerged deoxyri-
bozymes indeed fold into the five-stem structure to me-
diate their catalytic functions.

5J-A and 5J-B Belong to the Same

Deoxyribozyme Family
As implied from the sequences and structures of 5J-A28
and 5J-B38 (Figure 2), there seems to be no striking dif-
ference between sequence class A and class B, which
prompted us to consider whether they actually contain
the same catalytic module. It is difficult to postulate,
however, at this point if the catalytic core is composed
of the conserved nucleotide residues that are located
at several stem vertices surrounding the center of the
five-stem structure (especially the open ends of P4,
which contain the same sequence context but are de-
rived from different nucleotide positions in 5J-A and
5J-B, i.e., A70–C73 and A75–C78, respectively), as there
is not enough statistical data to underscore their cata-
lytic significances.

To determine if 5J-A and 5J-B utilize the same cata-
lytic solution to solve the same chemical problem,
DMS (dimethyl sulfate) methylation interference assays
[21] were performed to investigate if the N7 atoms of
some guanines and the N3 atoms of some adenines
were critically involved in the structural arrangements
or catalytic functions of 5J-A28 and 5J-B38. There are,
in theory, three different ways for these specific atoms
to affect the deoxyribozyme activity when they are
methylated: (1) tertiary interaction (presumably hydro-
gen bonds for either catalytic or structural involvement)
with a distant site is hindered; (2) the optimal arrange-
ment of nucleotides proximal to a concerned purine is
impaired due to steric clashes; (3) the optimal electronic
environment surrounding the concerned purine is al-
tered with an additional positive charge. Nucleotide res-
idues that interfered substantially with the self-cleavage
activities of 5J-A28 and 5J-B38, when methylated, are
highlighted with filled arrows in Figure 2 (see Figure S1
for experimental data; see the Supplemental Data
available with this article online). It is clear from the dis-
tribution of filled arrows that methylation interference
occurred at the same set of purines in both deoxyribo-
zymes, suggesting that the global folds of 5J-A and
5J-B are built from a similar array of local and distal
interactions. Interestingly, these purines are mainly lo-
cated in P2 and P3, which were inherited from the
OA-IV module as discussed earlier. Yet, the primary
region of 3J-22 that was intolerable to methylation is
J3/1 (Figure 2), which has become part of P4 in either
5J-A or 5J-B through evolutionary adaptation. This indi-
cates that the catalytic contributions of P2 and P3 vary,
depending on the structure landscape they are situated
in. This also implies that 3J and 5J have very different
structural arrangements even though they originate
from the same lineage.

Metal-ion requirement profiles for the featured deoxy-
ribozymes were also obtained by conducting 10 min
cleavage assays, by using substrate S1 (50-GATGTG
TCCGTGCFArQGGTTCGATCAAGAGAATT-30; F repre-
sents fluorescein-dT; Ar, ribo-adenylate; Q, DABCYL-
dT) and the trans-acting 5J-A28 and 5J-B38, in a range
of conditions that did not contain certain components
of the selection buffer. Cis-to-trans conversions of the
deoxyribozymes were made similarly by breaking loop
L2 (Figure 2) and extending stem P2b with extra base
pairs such that a stable P2b was created. The reaction
mixtures were analyzed by denaturing PAGE, and the
relevant fluorimages are shown in Figure 3. S1 alone
(lane 1) has a low level of fluorescence due to fluores-
cence quenching by DABCYL. The 50 cleavage fragment
denoted as ‘‘clv,’’ in contrary, is highly fluorescent (lane
2) owing to separation of the fluorophore from the
quencher. Cleavage activity in the selection buffer is
shown in lane 3. Lanes 4–10 indicate the requirement
of Na+, K+, Mg2+, Mn2+, Cd2+, Co2+, and Ni2+ for deoxy-
ribozyme activity. Both 5J-A28 and 5J-B38 showed no
selectivity for the monovalent ions, and they were cata-
lytically active only in the presence of Mn2+, Co2+, or
Ni2+. Since such a profile is not seen in any of the 6 OA
deoxyribozymes [17], nor in at least 12 other RNA-cleav-
ing deoxyribozymes reported in the literature [22, 23], it
is unlikely that it is purely coincidental that 5J-A and
5J-B share the same metal ion requirement profile.

With similar sequence context around the center of
the five-stem structure, the same cluster of nucleotides
that interfere with deoxyribozyme activity when they are

Figure 3. Metal-Ion Requirement Profiles of 5J-A and 5J-B

(A and B) Substrate S1 was cleaved by (A) 5J-A28 and (B) 5J-B38

into a 50 cleavage fragment (denoted as ‘‘clv’’) that can be observed

by fluorimaging. M(I) = Na + K; M(II) = Mg + Mn + Cd + Co + Ni; lane

1, no reaction; lane 2, S1 cleaved by NaOH; lane 3, M(I) + M(II); lane

4, Na + M(II); lane 5, K + M(II); lane 6, M(I) + Mg; lanes 7–10, M(I) +

Mg + other individual M(II) (lanes 7–10 contain Mn, Cd, Co, and Ni,

respectively). See Experimental Procedures for details.
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Figure 4. The Conserved Structure of 5J and

the Refined 5J-A28

(A) A consensus structure model of 5J. Con-

served nucleotides for both 5J-A and 5J-B

are shown. Stem loops or helices of variable

nucleotide contents are indicated as solid

lines connected by bars that denote

Watson-Crick interactions. H = A, C, or T.

(B) Improved 5J-A28 in the trans format. The

inset shows the single-turnover kinetics of

the improved 5J-A28 toward substrate S1 un-

der an optimized condition. The experimental

data were fitted into a double exponential

equation, which yields k1 = 2.96 min21, Yf1 =

65%; k2 = 3.27 3 1022 min21, Yf2 = 21%. See

Experimental Procedures for details.
methylated, and the identical metal-ion requirement
profile, it is reasonable to conclude that 5J-A and 5J-B
belong to the same deoxyribozyme family.

Validating the Secondary Structures of 5J-A28

We have chosen 5J-A as our model to further verify the
secondary structures of the 5J deoxyribozymes simply
because more sequenced clones of 5J-A than 5J-B ap-
peared in G11 (Figure 1B), which seems to suggest that
5J-A had more selective advantages (presumably better
folding and faster kinetics) over 5J-B in the course of
evolution. In addition, there are more base pair covaria-
tion data available for 5J-A (Figure 2), which could assist
the design of mutant variants intended for assessing the
catalytic significances of stems P3, P4, and P5. Briefly,
individual stem loops were incorporated separately
with deletions, substitutions, mismatches, and alternate
Watson-Crick pairings in a series of deoxyribozyme
constructs. Both 5 and 15 min cleavage assays were
carried out in trans by adding deoxyribozymes to vari-
ous substrates that were preincubated in the selection
buffer. Cleavage yields with regard to modifications of
a particular stem loop were compared. Details of individ-
ual mutant constructs and experimental results are pre-
sented in Figures S2 and S3. A summary of the results
will be described below.

All helices (P1–P5) were found to be required for deox-
yribozyme activity. Deletion of either DNA strand of any
helix or incorporation of several mismatches within the
stem motifs was detrimental to catalytic function. The
sequence contexts of P1 and P2 can be changed as
long as equivalent Watson-Crick base pairs are re-
tained. However, P2 could only be altered in the window
of L2 to the G22hC32 pair in P2b (Figure 2, 5J-A28). Mod-
ifications beyond this window resulted in a significant
drop in catalytic activity, indicating that P2a, the
G35G36A37 bulge, and the remaining two base pairs of
P2b all play significant roles in catalytic function. This
notion is further supported by the methylation interfer-
ence results, which showed that G33, G35, G36, and A41

in the aforementioned regions are intolerable to methyl-
ation. Similar to P2, P4 can only be mutated in the win-
dow of L4 to the G60hC69 pair in P4b. The contents of
L3, L4, and L5 are unimportant for catalysis, thus posing
several good sites for biosensor engineering [24, 25]. A
consensus 5J structure model is shown in Figure 4A.
Nucleotides that are conserved in all of the sequenced
clones of 5J-A and 5J-B are indicated (note: beside
the 13 sequences shown in Figure 1B, 53 additional se-
quences of 5J were obtained from a total of 327 clones;
see Figure S4). Adjustable stem loops or helices con-
firmed by characterizing 5J-A28 are depicted as solid
lines connected by bars.

Our best 5J-A28 mutant, which was about twice as ac-
tive as the wild-type construct (Figure S2, compare WT
and DC-5), is shown in Figure 4B. In single-turnover con-
ditions, the cleavage rate of this mutant toward sub-
strate S1 is best described by biphasic kinetics with
k1 = 2.96 min21 and Yf1 = 65% in the fast phase, and
k2 = 3.273 1022 min21 and Yf2 = 21% in the slow phase
(Figure 4B, inset; k represents the observed rate con-
stant; Yf represents the final cleavage yield).

5J Outcompeted 3J over the Course of Evolution
Intrigued by the improved performance of 5J-A28 over
3J-22 (w6-fold better), we were interested in examining
whether 5J was able to surpass 3J in the context of
in vitro selection. To address this question, the end pop-
ulation (G11, Figure 1A) was subjected to two additional
selection cycles, in which no additional mutations were
incorporated into the population by mutagenic PCR and
the reaction time was kept at 6 s. Individuals were
cloned from various generations covering G7–G13 and
were sequenced. Aligned sequences are shown in Fig-
ures S4 and S5. The partitions of various deoxyribozyme
classes in successive generations are shown in Fig-
ure 5A. ‘‘NR’’ in the figure represents sequences that
could not be recognized by using the highly conserved
sequence modules and the conserved stem loop motifs
of the 5J and all OA deoxyribozymes. An accelerated
growth in pool fractions of 5J accompanied with a quick
drop in 3J (Figure 5A) clearly indicates that 5J competed
better under the stringent time pressure. Interestingly,
5J-B, which appeared in higher abundance in early gen-
erations, was later outcompeted by 5J-A in G11 and on-
ward. This suggests that the mutational steps required
for the conversion of 3J to 5J-B were less than those re-
quired for 5J-A. However, 5J-A eventually became more
dominant, presumably owing to its better biochemical
properties.

Although the surviving DNA molecules were selected
based on their self-cleavage capability within the re-
stricted time, it is unclear whether other factors such
as PCR amplification efficiency might overpower the
competency of the deoxyribozyme and sway the pool
distribution contrarily to our expectation. To investigate
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if faster cleavage kinetics, as a dominant trait by itself, is
able to elucidate the selection mechanism behind the
competition between 3J and 5J, cis cleavage assays
were carried out in 13 SB, by using several clones arbi-
trarily selected from G6* (the asterisk refers to the nor-
mal selection trajectory, where no PCR mutagenesis
was applied) and G11. In brief, the self-cleavage rates
of the 3J deoxyribozymes showed a monophasic behav-
ior with relatively slower kinetics than the 5J deoxyribo-
zymes, which were at least 2.63 more efficient in the fast
phase of the cleavage reactions, given that their self-
cleavage rates all showed biphasic behavior (Figure S6).
Figure 5B pinpoints the differences in cleavage yield
between the 3J and 5J deoxyribozymes over the time
frame relevant to the reaction time allowed in G7–G12.
Despite a large variation in the cleavage rate and cleav-
age yield of the selected 5J-A deoxyribozymes, the fact
that 5J, in general (as exemplified by 5J-A28, 5J-A69,
and 5J-B38), had better kinetics and cleavage yield
than 3J in the beginning of the time course strongly indi-

Figure 5. Cleavage Kinetics as One of the Selection Forces behind

the Competition between 3J and 5J

(A) Distribution of deoxyribozymes over the course of evolution. 5J

includes both 5J-A and 5J-B. NR = not recognizable sequences.

Pool fractions of 3J and 5J over consecutive generations are con-

nected by solid lines to emphasize their fall and rise, respectively.

Pools prior to G8 were dominated by 3J (data not shown). The

plot was derived from a total of 267 clones over G8–G13.

(B) The first 15 s of self-cleavage reactions of some representative

3J and 5J deoxyribozymes. Reactions were carried out in 13 SB

with 50 nM deoxyribozyme. Cleavage assays for each time point

were repeated in at least three independent experiments, and the

data are presented as the means plus standard deviation. Cleavage

yields of 3J and 5J deoxyribozymes over time are connected by

a broken line and a solid line, respectively.
cates that faster cleavage kinetics was a critical trait to
develop in order to survive in a rigorous evolution land-
scape.

It is noteworthy that 5J, particularly 5J-B, took only
five rounds of selection and amplification to be detected
(Figure 5A, G9) after PCR mutagenesis was first intro-
duced into the selection procedure. For a functional ol-
igonucleotide to be discovered from a complete random
library, the number of selection cycles required typically
falls in the range of 4–20 cycles [7, 8]. With only a 6-fold
difference between 3J-22 and 5J-B38 (or even a 12-fold
difference between 3J-22 and 5J-A69) in terms of the
cleavage yield in the first 7 s of the reactions (Figure 5B),
faster cleavage kinetics could certainly not account for
the entire selection force that directed the population
distribution to favor 5J in such a rapid pace. This promp-
ted us to wonder if 5J could have existed in the starting
population and accumulated to a detectable amount
over many generations. The probability (P) for 5J-B to
appear in G0 (a synthetic library with a degeneracy of
0.3) was estimated to be 6.4 3 10219 (P = [0.7]40 3
[0.1]12), based on the 40 highly conserved residues
(>90% occurrence) and 12 common mutations with re-
gard to the starting sequence (Figure S4). For a popula-
tion of w1014 molecules (G0), it is very unlikely that 5J-B
could have existed in the synthetic library. Although
there might have been 6527 molecules of 5J-A (based
on the 27 highly conserved residues and 6 common mu-
tations) in the starting pool, the fact that 5J-A actually
appeared later than 5J-B in the evolution trajectory is
an indication that 5J-A also did not exist in G0. At this
point, we do not have any experimental evidence to im-
ply that there are other selection forces that might act on
the competition between 3J and 5J. Further deconvolu-
tion of the acting forces is a challenge to overcome
before the mechanism behind in vitro evolution can be
better understood.

Transition of 3J to 5J

With sequence information compiled from 327 clones of
3J, 5J-A, and 5J-B dispersed over G6* and G7–G13, here
we attempt to evaluate the evolutionary distance from
3J to 5J (distance here refers to the number of mutations
required for a 3J deoxyribozyme to convert into either
5J-A or 5J-B). For convenience, we use ‘‘EM’’ and
‘‘BP’’ to designate the highly conserved nucleotides
in a given 5J class, which do not overlap with those in
3J, and mutations that are required for the formation of
new Watson-Crick base pairs (including G-T wobbles),
respectively. In the 3J / 5J-A trajectory, we have iden-
tified seven EMs (A34, G57, T59, T72, C73, G74, and C90) and
seven BPs (G60-C69, C61-G68, T76-A89, A77-T88, C78-G87,
C79-G86, and G80-C85). In the 3J / 5J-B pathway, we
have found eight EMs (A34, G57, T59, A75, G76, T77, C78,
and C90) and seven BPs (G69-C74, T63-A71, G64-C70,
C65-G69, T81-A89, C82-G88, and T83-G87). Therefore, the
total number of mutations required for 3J/5J-A and
3J/5J-B conversions is 14 and 15, respectively (note:
a base pair is counted as one mutation instead of two).

We next normalize the required EMs and BPs such
that 5J-A and 5J-B will have a value of 1 in both EM
and BP. The averages of the normalized EMs and BPs
attained by individual clones from G6* and G7–G9 are
shown in Figure 6A (3J / 5J-A pathway) and Figure 6B
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Figure 6. Analysis of the Evolutionary Distance from 3J to 5J as

well as Mutation Frequencies over the Course of Evolution

(A and B) Averaged distances from 3J to (A) 5J-A and (B) 5J-B.

There are two types of mutations: the ones that are essential for

the catalytic function of 5J (EM), and the ones that create Wat-

son-Crick base pairs necessary for the secondary structures of

5J (BP). The total EMs and BPs that a 3J deoxyribozyme would ac-

quire to convert into 5J-A (equally 7) and 5J-B (8 and 7, respec-

tively) are normalized to 1. The average value of normalized EM,

BP, and EM + BP (distance) attained by the sequenced clones in

G6* and G7–G9 are shown as black, white, and gray bars, respec-

tively.

(C) Mutation frequencies over the course of evolution and in the

populations that consist of 5J deoxyribozymes. Probability distri-

bution of oligonucleotides with ‘‘m’’ number of mutations (P(m),

solid, upside-down triangle), as a result of one PCR mutagenesis

procedure, refers to the left y axis. See Experimental Procedures

for P(m) derivation. Mutation frequencies with respect to the start-

ing sequence (OA-IV) in G6* (open circle), G9 (small, filled squares),

and all of the sequenced clones of 5J-A (solid triangle) and 5J-B

(large, filled squares) refer to the right y axis. Mutation frequencies

in G7 and G8, and the mutation frequencies falling outside the

range of occurrences, are not shown for clarity. The averaged mu-

tations in G6* and G7–G9 are 10.2, 12.4, 13.0, and 14.2, respec-
(3J / 5J-B; see the figure legend for details), which re-
veal several interesting trends: (1) the overall distance
for a 3J/5J-A or 3J/5J-B transition does not change
significantly over the evolution trajectory; (2) the EM
value for 5J-A is smaller than that for 5J-B in every
generation; (3) in contrast, the BP value for 5J-A is larger
than that for 5J-B.

The first trend described above suggests that each
3J/5J transition is not a gradual process, but perhaps
a sudden switch event. The switch model is also consis-
tent with an observation at the sequence level, where
specific positions along the DNA sequence have a differ-
ent conserved nucleobase identity for 3J and 5J-A (or
5J-B). For example, at position 72, there is a need for
guanine in 3J, but thymine in 5J-A. Similarly, at position
75, 3J must have a guanine, but 5J-B requires an ade-
nine (Figure 2). These conserved nucleotide incompati-
bilities create apparent conflicts that make it difficult
for 3J to make a gradual transition to 5J. The incompat-
ibilities may, in turn, force the transition to proceed by
the switch mechanism.

We interpret the markedly different EMs (and BPs) for
the 3J/5J-A and 3J/5J-B transitions as the differential
potential of the evolving population to take on either of
the two transitions. The observation that 5J-B emerged
earlier than 5J-A (Figure 5A) suggests that it might be
easier for the evolving population to employ the evolu-
tionary pathway favored by more EM mutations. This
supports the idea that the likelihood for a particular motif
to be found from a region of distinct compositional
space is influenced, in the order of higher significance,
by the probability to find the global folding, flanking he-
lices, and conserved bases [26].

To analyze the mutational behavior of the evolving de-
oxyribozyme variants, we have calculated the mutation
frequencies that occurred in all of the sequenced 3J
and 5J clones with respect to the starting sequence
OA-IV (which was used as the basis for the creation of
a degenerate library by chemical synthesis). The data,
along with the probability of sequences having different
numbers of mutations generated by the mutagenic PCR,
are shown in Figure 6C.

Two points can be made from the analysis of the data
in Figure 6C. First, the PCR mutagenesis indeed intro-
duced more mutations into 3J variants along the selec-
tion course. This is evident from comparison of the fre-
quency curve of the 3J variants in G6* (open circle) with
that in G9 (small solid square). For clarity, the data
for G7 and G8 variants are omitted. Second, we believe
that the strategy of evolving a degenerate deoxyribo-
zyme library produced by chemical mutagenesis,
followed by further incorporation of mutations with
mutagenic PCR, will facilitate the isolation of rare de-
oxyribozyme motifs such as 5J-A and 5J-B. We have al-
ready discussed in the previous section that it is unlikely
that we can isolate the 5J deoxyribozymes from the syn-
thetic library. Our calculation indicates that the muta-
genic PCR protocol is able to generate all possible

tively. 5J-A and 5J-B have an average of 20.4 and 16.0 mutations,

respectively. Note that G6* and G7–G9 are populated mostly by 3J

deoxyribozymes, with the exception of one single 5J-B found in G9.

This 5J-B sequence is not taken into account in order to minimize

statistical errors.
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sequence variants with up to only 10 mutations plus in-
creasingly smaller fractions of the sequence variants
with higher errors (note: this calculation was made on
the assumption that the PCR procedure in each selection
round could generate w1013 molecules). Considering
DNA polymerase’s strong bias for making transition
over transversion errors in the mutagenic condition [18,
19], the actual coverage of all possible sequence variants
could be even smaller. Since the number of mutations in
5J-A (solid triangle) and 5J-B (large solid square) clones
mainly fall in the range of 20–22 and 15–17, respectively,
it is hard to imagine that mutagenic PCR alone could eas-
ily generate such hypermutated variants.

Implications for Evolutionary Biology

and Biotechnology
The abundance and diversity of functional nucleic acids
(abbreviated as FNA) in a given sequence space have
important implications on the output of an in vitro selec-
tion experiment and the ‘‘RNA world’’ hypothesis. The
abundance has been demonstrated by a plethora of nu-
cleic acid aptamers and enzymes that were identified in
nature and created artificially in laboratories. The diver-
sity on the structural level, however, has hardly been ex-
plored. It has been suggested by a computational study
that a random sequence library, regardless of its size,
heavily favors simple topological structures such as lin-
ear stem loops and low-branching motifs [27]. The cur-
rent compilation of FNAs clearly illustrates that percep-
tion [4, 6, 7, 23, 28]. As a consequence, the variety of
chemical problems that can be solved by nucleic acids
will always be constrained by the same cluster of simple
structural modules. Here, we trained the deoxyribozyme
OA-IV that contains the most common three-way junc-
tion scaffold found in a wide variety of FNAs [17, 23,
28–30] to perform better in catalyzing an RNA-cleavage
reaction by changing its genotype with mutagenic PCR.
The result was a more complex secondary structure with
five stems in a star-like configuration accompanied by
improved cleavage kinetics. Such a peculiar configura-
tion was also found in the peptidyl transferase center
of 23S ribosomal RNA [31] and the recently identified
lysine riboswitch [32, 33], but it was never found in any
FNA isolated by in vitro selection. Hence, there is defi-
nitely a range of complex functional motifs that are yet
to be discovered but with an unconventional strategy.

Previous strategies to create artificial FNAs typically
involved a complete random library of different lengths
[8] or a hypervariable sequence with a built-in structural
domain [34–37]. In some cases, the optimization of the
isolated FNAs was performed by incorporating light mu-
tation (1%–10% per position) via mutagenic PCR. Since
the development of new functions and altered ligand
specificities [38, 39] was usually the objective of previ-
ous studies, the sequence diversity within a particular
FNA class was not explored to evolve a new functional
motif. Although our initial objective was to further opti-
mize deoxyribozyme OA-IV, the idea of evolving a rare
multibranching motif from a relatively simple secondary
structure is illustrated here. The evolution of alternative
catalytic modules that were identified in several OA lin-
eages (data not shown), including OA-IV, strongly en-
courages the search for new functions by sampling the
sequence space (or the so-called ‘‘neutral network’’
[40, 41]) of a given FNA. The rationale behind this is
that if a few sequence variants of a particular FNA ini-
tially contain base compositions that are biased toward
forming alternative structures, these sequences could
be transformed into a new functional motif by structural
rearrangement with the aid of appropriate mutations
supplied by mutagenic PCR. Alternatively, a degenerate
library of an existing functional module could also be
used as the starting point from which to build new
FNAs, as shown by previous selection efforts [42–44].
However, in our particular case, the rare 5J motifs can
be reached only through some mutational pathways
from a few specific coordinates in the sequence space
of the 3J motif.

Recent advances in biosensing technology and nano-
technology have exploited nucleic acid aptamers and
enzymes as the sensing and signaling platforms for
the detection of a specific target [24, 45]. The helical
and stem-loop motifs of a nucleic acid enzyme are usu-
ally the sites for sensor coupling. However, since the
contents of these regions in most enzymes cannot be al-
tered, as a significant drop in catalytic activity would be
compromised, the number of targets that could be de-
tected concurrently would be very limited. Here, we
present a deoxyribozyme that can potentially be equip-
ped with up to five sensors and give a fluorescence-
signal output upon target binding. We believe the
high-branching configuration of 5J will be put to good
use in sensing and signaling applications.

Significance

The present study describes how a deoxyribozyme

supported by the three-way junction (3J) framework
was converted into the five-way junction (5J) struc-

tures, which have better catalytic performance,
through evolutionary pathways. The in vitro evolution

of such high-branching motifs has expanded the struc-
tural diversity of nucleic acids with a catalytic function.

The 3J-to-5J transition involved the preservation of
two helical stems and structural rearrangement of the

original catalytic core, which later acquired several
mutations in order to compete better under a more

stringent selection pressure. The catalytic contribu-
tion of the two preserved stems, however, differs in

the 3J and 5J scaffolds of the deoxyribozymes. These
again indicate the high plasticity of nucleic acids to

adopt different structural folds from a pre-existing
structure if provided with appropriate mutations. Ana-

lyzing the origins of 5J deoxyribozymes suggests that
a highly intricate structure may only be isolated

through the evolution of some sequence variants of
an ancestor with a simpler secondary structure, rather

than directly from a completely random library or from
a degenerate library. Perhaps, this less-explored strat-

egy to search for new structural motifs will find great
use in future selection experiments.

Experimental Procedures

In Vitro Evolution

A portion (w20%) of the G4 population (see Figure 1A for the selec-

tion trajectory) was PCR amplified in a volume of 50 ml containing 75

mM Tris-HCl (pH 9.0), 2 mM MgCl2, 50 mM KCl, 20 mM (NH4)2SO4,
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0.2 mM each of the four dNTPs, 1.25 U Thermus thermophilus DNA

polymerase, 0.5 mM DNA primer 1 (50-TTACATCTACAA

ACATGGTTCGATTCTTGA-30) and 0.5 mM DNA primer 2 (50- CGATG

CGGGTGCCATGC-30). The PCR was carried out for 10 thermocycles

during which the temperature was altered in the following order:

94�C, 30 s (2 min for the first cycle); 45�C, 45 s; 72�C, 45 s. A small

portion (w1023%) of the PCR products was amplified in the second

PCR by using a similar condition to that described above, but with

0.3 mM primers 2 and 3 (50-TTACATCTACAAACATGGTTCGAr-30),

for 15 cycles of 94�C, 30 s (2 min for the first cycle); 53�C, 45 s;

72�C, 45 s. Radiolabeling of the pool was conducted in a manner

similar to that of the second PCR, but with 3 mM each of the four

dNTPs, 10 mCi [a-32P]dGTP, 0.2 mM primers 2 and 3, in a total volume

of 25 ml. To introduce w10% mutations per nucleotide position, mu-

tagenic PCR was performed in parallel for 20 cycles of 94�C, 30 s

(2 min for the first cycle); 53�C, 45 s; 72�C, 90 s. The mutagenic con-

dition was adapted from the protocol reported by Vartanian et al.

[18] and is described as follows: 20 mM Tris-HCl (pH 8.4), 50 mM

KCl, 2.5 mM MgCl2, 0.5 mM MnCl2, 30 mM dATP and dCTP, 1 mM

dGTP and dTTP, 0.05 U/ml Thermus aquaticus DNA polymerase,

0.3 mM primers 2 and 3, and a small portion (%1023%) of the first

PCR products. Mutagenic PCR amplification was performed after

rounds 4–9 in the evolution trajectory. The proportion of mutated se-

quences, wherein the mutations were incorporated by mutagenic

PCR, and nonmutated sequences was varied from round to round

in various arbitrary ratios; rounds 4–9, 3:1, 3:2, 3:2, 2.4:1, 1:1.2. Mu-

tagenic and nonmutagenic PCR products were combined and etha-

nol precipitated. The pellet was resuspended in 90 ml of 0.25 M NaOH

and was incubated at 90�C for 10 min to cleave the single ribonucle-

otide linkage (Ar) within one of the two strands. A total of 10 ml of 3 M

NaOAc (pH 5.2) was subsequently added to neutralize the solution.

The cleaved DNA strand was isolated by 10% denaturing PAGE,

eluted from the gel, and ethanol precipitated. To restore the DNA

into the self-cleaving construct, the DNA was first 50 phosphorylated

by using T4 polynucleotide kinase (PNK). It was then annealed to the

chimeric DNA/RNA substrate (50-GATGTGTCCGTGCFArQGGTT

CGA-30) by using a DNA splint and T4 DNA ligase. The ligated oligo-

nucleotides were purified by 10% denaturing PAGE and resus-

pended in H2O.

The oligonucleotide solution was heated at 90�C for 30 s and

cooled at room temperature for w10 min. The self-cleavage reaction

was carried out with w0.1 mM oligonucleotide in 13 selection buffer

(SB) (13 SB; 50 mM HEPES [pH 6.8] at 23�C, 400 mM NaCl, 100 mM

KCl, 7.5 mM MgCl2, 5 mM MnCl2, 1.25 mM CdCl2, 1 mM CoCl2,

0.25 mM NiCl2). The reaction was stopped after 1 min by adding

EDTA (pH 8.0 at 23�C) to a final concentration of 30 mM. The self-

cleaved oligonucleotides were separated from the inactive species

by 10% denaturing PAGE and were used as the templates for PCR

amplification, so as to begin the next selection cycle. Eight addi-

tional rounds of selection were performed as described above,

except that the reaction time was shortened to 6 s. G7–G11 and

G13 populations were cloned and sequenced for further analyses.

Metal Ion Requirements

Metal ion requirements for deoxyribozyme activity were determined

by comparing the cleavage activities in trans in a range of reaction

conditions that did not carry certain components of the selection

buffer. Cleavage reactions were initiated by adding deoxyribozyme

(optimized 5J-A28 [Figure 4B] or nonoptimized 5J-B38) to S1 (see

Supplemental Experimental Procedures for its making), which was

preincubated in one specific buffer. The final concentration of

each constituent in the reaction mixtures was as follow: 5 nM S1,

250 nM deoxyribozyme, 50 mM HEPES buffer (pH 6.8 at 23�C), differ-

ent proportions of monovalent and divalent metal ions with refer-

ence to Figure 3: lane 3, M(I) + M(II) (M(I) represents 400 mM NaCl

and 100 mM KCl); lane 4, 400 mM NaCl + M(II) (M(II) represents all

divalent metal ions in the same concentrations as in 13 SB); lane

5, 100 mM KCl + M(II); lane 6, M(I) + 15 mM MgCl2; lane 7, M(I) +

5 mM MnCl2 + 10 mM MgCl2; lane 8, M(I) + 1.25 mM CdCl2 + 13.75

mM MgCl2; lane 9, M(I) + 1 mM CoCl2 + 14 mM MgCl2; lane 10, M(I)

+ 0.25 mM NiCl2 + 14.75 mM MgCl2. The reactions were stopped af-

ter 10 min or 2 hr (data not shown, as similar profiles were observed)

by adding EDTA (pH 8.0) to 30 mM. Lane 1 is a control of no cleavage.

Lane 2 shows the full cleavage of S1 by NaOH; that is, 5 nM S1 was
incubated in 0.25 M NaOH for 10 min at 90�C, followed by neutraliza-

tion with 0.3 M NaOAc (pH 5.2). The oligonucleotides in all reaction

mixtures were precipitated with ethanol before analyses by 10% de-

naturing PAGE. For fluorimaging, the excitation wavelength on the

variable mode imager was set to 532 nm (green laser), while the

emission was monitored at >535 nm by using a long-pass filter.

Cleavage fractions were quantitated only from phosphorimages by

using the Molecular Dynamics software (data not shown).

Kinetic Analyses

Self-cleavage assays were carried out with 50 nM deoxyribozyme in

13 SB at room temperature. Deoxyribozyme was first heat dena-

tured in H2O at 90�C for 30 s, and it was then cooled at room tem-

perature for w10 min. Reactions were initiated by mixing a deoxy-

ribozyme with the selection buffer, and they were stopped after

a designated period of time by adding EDTA (pH 8.0) to 30 mM.

For trans reactions, 750 nM deoxyribozyme was combined with

5 nM substrate S1 in an optimized reaction condition (50 mM HEPES

[pH 7.0], 1 mM CoCl2, 10 mM MnCl2, 1 3 1023 % Tween 20). Higher

deoxyribozyme concentrations did not considerably enhance the

catalytic rate, indicating that 750 nM deoxyribozyme was saturating

(data not shown). The reactions were stopped in a manner similar to

that described above. Cleavage products from both cis and trans re-

actions were separated by 10% denaturing PAGE and quantitated

by using a phosphorimager and the Molecular Dynamics software.

The cis kinetic experiments were conducted over 10 time points

over the course of 2 hr, while the trans cleavage assays were con-

ducted over 12 time points over the course of 5 hr. Cleavage assays

for each time point were repeated in at least three independent ex-

periments. The cleavage fraction was plotted versus time and fitted

to either a single (Y = Yf [1 2 e2kt]) or a double (Y = Yf1[1 2 e2k1t] +

Yf2[1 2 e2k2t]) exponential equation with R2 > 0.99 by using Graph-

Pad software Prism 4.03. Y represents cleavage yield; Yf represents

final cleavage yield; k represents the observed rate constant.

Calculating P(m)

P(m) = ur 2 m�(1 2 u)m �rCm, where P is the probability of having

oligonucleotides with m mutations as a result of one PCR mutagen-

esis procedure; u = 0.9 (fraction of unchanged nucleotides per posi-

tion); r = 60 (randomizable region; see Figure 1B); rCm = a combinato-

rial function of r taking m at a time, i.e., the total number of possible

combinations for m in the randomizable region.

Supplemental Data

Supplemental data include methods for oligonucleotide prepara-

tion, DMS methylation interference assays, and secondary structure

characterization, as well as figures for DMS methylation interference

patterns of selected 5J-A and 5J-B, secondary structure character-

ization of 5J-A28, alignment of cloned sequences over the course of

evolution, and cis kinetic data relevant to 3J-11, 3J-22, 5J-A28,

5J-A69, and 5J-B38. These data are available at http://www.

chembiol.com/cgi/content/full/13/10/1061/DC1/.
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